If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+2x-33=0
a = 4; b = 2; c = -33;
Δ = b2-4ac
Δ = 22-4·4·(-33)
Δ = 532
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{532}=\sqrt{4*133}=\sqrt{4}*\sqrt{133}=2\sqrt{133}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{133}}{2*4}=\frac{-2-2\sqrt{133}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{133}}{2*4}=\frac{-2+2\sqrt{133}}{8} $
| 0.2x+12=14 | | 12g-12-16g=-42+2g | | 15x+29+26-3=180 | | 80+19x+2=-2+21x | | 10-6p+p=5 | | 98+6x+8=5x+2 | | 5x-10/3x=1 | | H(s)=2. | | -x-8=-3x+4 | | M-10=-13-2n | | -3(m-5)-3m=9-9m | | 50+30d=500 | | .5n+8=12 | | 5a-a+4=24 | | -3k+6(5k-1)=210 | | 2^2x+15=23 | | (5x-12=2 | | 0.02(y-1)+0.20y=0.14y-0.6 | | 7x4=28 | | 7x4=27 | | 5+7n=28 | | 2x–12=5x–24 | | 1.5^x=2 | | .05(1/2x)+.10x+.25(2x)=6.25 | | 5x-20/3x=1 | | 7x+6+90=180 | | Y=-20x+600 | | 1/2+1/5=x | | 0.02n+193=0.3+1/2(n-4) | | 7d-3=-24 | | 12r=-60 | | 32=m+16 |